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REVIEW 

Mechanical Properties of Liquids: Newtonian and Beyond 

D. M. HEYES' and N. H. MARCH' 

* Department of Chemistry, University of Surrey, Guildford, Surrey GU2 5 X H ,  England 
Theoretical Chemistry Department, University of Oxford, 5 ,  South Parks Road, 

Oxford 0x1 3UB, England 

(Received 2 October 1993) 

The theory of various mechanical properties of liquids, both Newtonian and non-Newtonian, is reviewed. 
Especially attention is first paid to viscosity, both shear and bulk, and the relation between them is illustrated 
by reference to an approximate theory of a hard sphere fluid. Relation of these viscosities to other transport 
coefficients is then considered, the celebrated Stokes-Einstein relation being one focal point. After a brief 
summary of molecular dynamical simulation results on Lennard-Jones liquids, a substantial part of the 
review is devoted to nowNewtonian liquids. In particular, linear viscoelastic response leads to a complex 
shear modulus, with real part the storage modulus and imaginary part the loss term; simple models for these 
are summarized. Then substantial attention is given to the results of molecular simulation applied to linear 
and non-linear transport coefficients of molecular liquids and its extension to the dynamics of colloidal 
liquids. The article concludes with some proposals for future work in this general area. 

KEY WORDS Viscosities, Stokes-Einstein relation, non-Newtonian liquids. 

1 INTRODUCTION 

Mechanical properties of liquids include shear and bulk viscosities, compressibility, both 
isothermal and adiabatic, and related to the latter, the velocity of propagation of sound. 

After some brief remarks on the mechanisms of viscous flow in liquids, the topic of 
viscosity is taken up quantitatively for the model of a dense hard sphere liquid, for 
which approximate analytical results can be obtained for various transport coefficients. 
This model, while too primitive for quantitative treatment of any one monatomic 
liquid, is valuable in (a) estimating bulk viscosity from shear viscosity q, the former still 
being rather hard to measure in the laboratory, and (b) for forging links with other 
transport coefficients, eg thermal conductivity and also the self-diffusion coefficient 
D. Any relationship between thermal conductivity and shear viscosity is then inves- 
tigated for liquid argon. While there is an undoubted correlation, there is substantial 
temperature dependence of the ratio A/q, which is predicted to be constant in the hard 
sphere model. 

Therefore, attention is then focussed on a further ('cage') model due to Zwanzig, 
which is connected with the Stokes-Einstein relation between D and q, but now 
embraces also the bulk viscosity. The relation of the latter quantity to sound-wave 
attenuation is emphasized. 
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2 D. M. HEYES AND N. H. MARCH 

The next part of the article is then devoted to the relation between mechanical 
properties and the dynamical structure factor S(q, a) of the liquid. This quantity is, in 
essence, the probability that a neutron incident on the liquid will transfer momentum 
hq and energy h a  to the liquid. The integral over all energy transfers gives the static 
structure factor S(q), which, when diminished by unity and Fourier transformed, yields 
the pair distribution function g(r)  of the liquid. The long wavelength limit S(q = 0) is 
related by fluctuation theory to the isothermal compressibility K , ,  another basic 
mechanical property of liquids. Because of the pronounced short-range order in dense 
liquids like argon near its triple point, S(0)  is very much less than unity. It is even 
smaller for liquid metals, often as low as 0.01 at their melting points. 

The hydrodynamic diffusion equation is used, by way of illustration, to set up 
a formally exact Green-Kubo formula for the coefficient D of self-diffusion, and this is 
then generalized to give a related formula for a combination of shear and bulk 
viscosities in terms of the dynamical structure factor. 

Because of the need to appeal to hard spheres, and to the ‘cage’ model, to obtain 
analytical expressions for transport coefficients, with their obvious quantitative limita- 
tions when applied to realistic liquids, a short discussion of time-dependent correlation 
functions is given in relation to computer experiments on Lennard-Jones liquids. 
These, of course, afford an alternative to laboratory experiments on dense argon or 
krypton, but with the advantage that the transport coefficients are calculated from 
a known, given, pairwise additive force law. 

The above discussion is about Newtonian liquids, for which there is a direct 
proportionality between shear stress and rate of shear. An inevitably more qualitative 
discussion is added on non-Newtonian liquids, with some experimental facts, plus a few 
theoretical concepts that seem to point valuable directions for future progress. The 
article concludes with a brief discussion of the now important technological area of 
interfacial transport, closely related to interfacial hydrodynamics. The interfacial shear 
viscosity, defined as interfacial shear stress divided by the rate of shear, can now be 
measured in the presence of surfactants. 

2 MECHANISMS O F  TRANSPORT 

It is well established that in a liquid the transport of momentum (and energy), as 
opposed to the transport of matter, occurs by two independent mechanisms, namely 
the bodily movement of molecules through space and the action of intermolecular 
forces at a distance. Of these two processes, the former is predominant at low densities 
while the latter is the important mechanism at the high densities with which we are 
concerned in this review. The transport properties of monatomic fluids at low densities 
are well understood through the work’ of Chapman and Enskog. The dense liquid 
transport problem is less well understood at the time of writing. This is because in 
a liquid where the intermolecular potential varies continuously with distance, the 
collisional momentum (or energy) transport arises from a distortion of the radial 
distribution function g(r), as emphasized in the early work of Irvingand Kirkwood’. At 
the time of writing, no entirely satisfactory approach has been found to allow the 
calculation of this distortion. 
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MECHANICAL PROPERTIES OF LIQUIDS 3 

Below, we shall exploit the simplicity of a model liquid of dense hard spheres to 
calculate the transport of momentum, reflecting the shear viscosity q, and the transport 
of energy, yielding the thermal conductivity 1. However, before turning to that, we need 
to say a little about the somewhat less well known bulk viscosity. 

2.1 

Consider first the viscous attenuation of a plane wave in a liquid of shear viscosity q. As 
the wave travels, there is relative motion of adjacent layers ofthe liquid and this results 
in the creation of viscous forces which act against the acoustic pressure of the wave. 
Energy is taken out of the wave to overcome these viscous forces, a progressive 
extraction of energy which results in a corresponding progressive decrease in the 
intensity. When the product of angular frequency o and relaxation time is very much 
less than unity, which is usually the case, then the acoustic absorption coefficient, a1 
say, due to shear viscosity, can be shown to take the form (see e.g. Temperley and 
Trevena3) : 

Compressional (or bulk) viscosity: mechanism and measurement 

2 0 2 q  
a, =- 3dc3 

where d is the mass density of the liquid while c is the velocity of sound. 
We can now modify the above formula (2.1) to take account of structural relaxation. 

This is done by introducing a compressional viscosity, q’ say, through rewriting Eq. 
(2.1) as 

Thus, in principle, one can extract the compressional viscosity q’ from measurements of 
sound-wave attenuation, plus shear viscosity. Of course, in practice, the information 
that can be extracted depends on error bars on a1 and q from experiment, and the 
amount q‘ contributes in Eq. (2.2) relative to the shear viscosity q. 

But it is a fact that the interpretation of such acoustic absorption measurements 
requires, beyond density and velocity of sound appearing already in Eq. (2.2), accurate 
knowledge, transcending that equation, of heat capacity and also of other transport 
coefficients, and in particular thermal conductivity. It may be some time yet, therefore, 
before one can avoid considerable uncertainties in the final ‘experimental’ values of 
compressional viscosity q’. 

3 SHEAR AND BULK VISCOSITIES OF DENSE HARD 
SPHERE LIQUID 

We have noted above that, strictly, to calculate the transport of momentum, and hence 
the shear viscosity q, one must be able to calculate the distortion of the pair function 
g(r), and that this remains as a largely unsolved problem. 
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4 D. M. HEYES AND N. H. MARCH 

However, as emphasized by Collins and Raffe14 and by Longuet-Higgins and Pople’, 
in a liquid consisting solely of rigid molecules the singular nature of the intermolecular 
potential permits a finite flux of momentum (or energy) even when the radial distribu- 
tion function is momentarily isotropic, as it is in equilibrium. It should not, however, be 
assumed that in a hard-sphere liquid under shear the pair distribution function really is 
isotropic-in fact the velocity gradient will instantly distort it-but nevertheless by 
assuming an isotropic distribution function one can make a better than order of 
magnitude estimate of the transport coefficients, following Longuet-Higgins and 
Pople’. 

The earliest study of the transport properties of a dense hard-sphere liquid again 
goes back to Enskog (see the book by Chapman and Cowling’). Indeed Enskog 
developed a modified form of the Boltzmann equation for the single-particle distribu- 
tion function to apply at high densities. Subsequently Collins and Raffe14 used the free 
volume theory of liquids to obtain an expression for the shear viscosity of a hard-sphere 
liquid which is closely related to the one derived below, following the approach of 
Longuet-Higgins and Pople’. These latter workers demonstrated that it was possible 
to calculate the collisional contributions to both bulk and shear viscosities in a direct 
manner by making just two assumptions: 

(A) that the spatial pair distribution function depends only on the temperature and 
density and not on the rate of strain (or temperature gradient) and 
(B) that the velocity distribution function of a single particle is Maxwellian with a mean 
equal to the local hydrodynamic velocity, and a spread determined by the local 
temperature. 

3.1 Shear viscosity 

Let us consider a situation in which the fluid is subjected to a steady shear represented 
by 

all other components of the rate-of-strain tensor being zero. If M denotes the mass of 
a sphere, p’ represents a momentum rather than a velocity gradient. One can now 
proceed to evaluate the total x-momentum transferred through unit distance in the 
y-direction in a very short unit of time. This momentum transfer will be due almost 
exclusively to collisions of pairs of spheres which are already close together at the 
beginning of the short period of time. Let us denote such a pair of spheres by 1,2 and 
let the direction cosines of the unit vector 1 along momenta of the line of centres r12 be 
I,, I ,  and I , .  If the components of the two spheres in the direction r12 are p1,p2, then 
their relative momentum of approach is 

P’PI - P 2  

Now if p > 0, the spheres will soon-collide, and when this happens an amount of 
momentum pl will be transferred from one to the other. The x component of this 
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MECHANICAL PROPERTIES OF LIQUIDS 5 

momentum is pl ,  and the y-component of the vector c1 is 2aly, where a is the radius of 
a sphere. Moreover the rate of approach of the two spheres is p / M .  Therefore the total 
flux of x-momentum in the y direction arising from collisions is 

Here h ( w , p ) d w  represents the number of pairs per unit volume within unit small 
distance of contact having relative momentum p and such that the vector I lies in the 
solid angle d o .  The first integration is over all possible orientations while the second is 
over the positive range of p .  

To this point the argument is exact. But to proceed further it is, of course, necessary 
to insert a form for h. To obtain such a result Longuet-Higgins and Pople' assume 
a form 

where go is the equilibrium number of pairs per unit volume within unit (small) distance 
of contact and (b(w, p)  is the probability that spheres 1,2 have relative momentum p in 
the direction r12. This form (3.4) has subsumed in it the assumption already referred to 
that the spatial pair distribution function is independent of the rate of strain. Next, it 
can be assumed without loss of generality that the fluid velocity is zero at the point of 
collision of the two spheres. Then the average momentum of the first sphere is ap'l, in 
the x-direction and that of the second sphere is - up'l,. The mean values of pl, p 2  are 
therefore ap'l,l,, - ap'l,l, respectively and one can write down their distributions (bl 
and (b2 readily since the momentum distribution is assumed to be locally Maxwellian. 
The distribution of p needed in eqn (3 .4)  is therefore 

(b(w,p) = (4zMk,  T ) -  'I2exp( - ( p  - 2ap'lx1y)2/4Mk,T. (3.5) 

This can be used in Eq. (3 .3)  to calculate the momentum flux. In evaluating the 
integral, it is a valid procedure to expand the integrand to only the first power of p', 
since velocity gradients are assumed small. The result is (Longuet-Higgins and 
Pople'): 

where go is the value of l..e radial distribution function 9,. ) at contact. This can be 
expressed precisely in terms of the pressure P and the number density N/V to yield for 
&/(p'/M) which is simply the shear viscosity q. 
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6 D. M. HEYES A N D  N .  H. MARCH 

Before considering this result for the shear viscosity further, let us outline the way the 
corresponding result for the bulk viscosity can be calculated. 

3.2 Bulk viscosity 

To calculate the viscosity, q, say, one imagines the fluid to be contracting uniformly at 
a rate determined by the velocity gradients 

Considering the fluid velocity to be zero at the point of collision between spheres 1 and 
2, the distributions of p1 and pz are now found to be 

~~(P1)=(21KMk,T)-”ZeXp( -(pl -Upb)2/2Mk~T) (3.9) 

while & ( p 2 )  is given by simply replacing the quantity (pl -up;) in Eq. (3.9) by 
(p2 + up;). Now the flux of z-momentum in the zdirection is obtained by substituting 
z for x and y in Eq. (3.5). Using the same form as before for the function h(w, p), the 
corresponding quantity to Eq. (3.6); namely Fzz, leads to a sum of two terms: one of 
which is independent of the rate of strain and represents the collisional contribution to 
the pressure, while the other, which is proportional to the rate of strain, must be 
interpreted as giving rise to a bulk viscosity. The coefficient of bulk viscosity qB is, in 
fact, the pressure decrease divided by the divergence of the rate of strain, which in the 
present case is just - 3pVM. The bulk viscosity that results is 

(3.10) 

This is seen by comparison with Eq. (3.7) for the shear viscosity of a hard sphere liquid 
to show that the bulk viscosity q, is (5/3) of the shear viscosity q. 

4 VISCOSITIES CORRELATED WITH OTHER TRANSPORT PROPERTIES 

In this section, we shall be concerned with correlations which connect viscosities with 
other transport coefficients, the most celebrated of these being the so-called Stokes- 
Einstein relation (see Hansen and McDonald6). A useful starting point is again afforded 
by the hard sphere results for dense liquids, set out in the previous section. 

4.1 

By quite similar arguments to those set out in section 3 for shear and bulk viscosities, 
Longuet-Higgins and Pople’ also calculated the thermal conductivity 1 for a dense 
hard sphere liquid, with the result: 

Connection between shear viscosity and thermal conductivity 
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MECHANICAL PROPERTIES OF LIQUIDS 7 

h/q x 1 O2 kg-’JK’ 

8.0 

6.0 

4.0 
80 100 120 140 160 T/K 

Figure 1 Ratio of thermal conductivity 1 to shear viscosity q for liquid argon. Prediction of Eq. (4.2) for 
hard sphere liquids is also shown. Evidently, variation of 1/q by about a factor of two actually occurs 
over temperature range plotted. 

Combining this with the result (3.7) for the shear viscosity q, one obtains 

A 5 k ~  -=- 
?I 2M 

where M is the atomic mass. 
As an immediate test of the correlation (4.2), Figure 1 shows a plot of experimental 

data for argon. There is evidently a substantial variation of the ratio A/q with 
temperature at constant pressure, the contant result (4.2) being also shown in the 
Figure for comparison. We shall return in section 5 to a treatment of transport in 
a Lennard-Jones fluid like argon, though numericai computation wiIl then be needed. 
Ascough, Chapman and March’ have made a somewhat wider study of the prediction 
that A/q  is constant, and the interested reader is referred to their work. 

4.2 Correlation between diffusion and shear viscosity: Stokes law 
We referred in section 2 to common elements in the mechanism of transport of 
momentum and of energy; these are reflected, of course, for hard spheres in the 
correlation (4.2). While the mechanism is different for mass transport, Louguet- 
Higgins and PopleS have also calculated D for a dense hard sphere liquid as 

D = - ( - )  a nk,T ‘ I 2  (m-1) Pv -’ . 
2 M  

It is then immediately seen from Eqs. (3.7) and (4.3) that 

2a2 N k ,  T 
D q = -  

5 v .  

(4.3) 

(4.4) 

This equation for the product D has the form of the Stokes-Einstein relation: namely 
D - k ,  T/I, where 1 is a characteristic length. Evidently I - ( V/N)/u2 in.the hard sphere 
result (4.4). 
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8 D. M. HEYES AND N. H. MARCH 

4.3 

In this section we shall consider the generalization proposed by Zwanzig’ of the 
Stokes-Einstein relation to embrace bulk viscosity. It is based, in essence, on a ‘cage’ 
model of an atom in a liquid. In such a model, one imagines an atom on which attention 
is focussed being confined within a limited volume (cage) for an interval of time during 
which it performs vibrations withia the cage. Eventually, by stochastic processes, the 
cage ‘opens up’ and the atom ‘hops’. Let us follow Zwanzig in subsuming these ideas 
into an explicit, albeit somewhat oversimplified, model. We shall then see that 
a generalization of Eq. (4.4) follows. 

Let us consider then the motion of the atom performing vibrations about the centre 
of the cage. The time dependence of a single normal mode contribution varies as cos wt, 
until a cell jump interrupts this motion. Normal modes in different subvolumes are 
interrupted at different times. Zwanzig* accounts for this by introducing a factor of the 
form exp( - r/T), the waiting time distribution for cell jumps that destroy the coherence 
of the oscillations in any subvolume V*. The result is to yield a form for the diffusion 
constant D given by 

Generalization of Stokes- Einstein relation to embrace bulk viscosity 

where the sum is over all the 3 N  normal mode frequencies. 
In the absence of much detailed information about the actual frequency distribution 

(see also below), Zwanzig’ utilized a Debye spectrum. Treating longitudinal and 
transverse modes separately, each with its own Debye cut-off qo: 

w,(q) = u,q : w, = v,q (4.6) 

for 0 < 4 < qo, u1 and v, being longitudial and transverse velocities of sound respec- 
tively. The cut-off 4* is chosen such that there are N modes in each branch of the 
spectrum, so that 

When the sum over frequencies in a single branch of the spectrum is replaced by an 
integral over q. one arrives, with a minor additional approximation, at the Zwanzig 
expression 

D=- k B T (  - 3 N ) 1 ‘ 3 (  I ) 
3n 4nV dvfr  dv:T * 

One next notes in Eq. (4.8) that du: is an elastic bulk modulus, whereas du: is 
a corresponding shear modulus. As Zwanzig notes, one expects that dufr and du: T are 
actually the longitudinal and shear viscosities ‘1, and respectively. Then the self- 
diffusion coefficient becomes, from Eq. (4.8): 

k,T 3N 
= (x ) (Gy(; + :). (4.9) 
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MECHANICAL PROPERTIES OF LIQUIDS 9 

Equation (4.9) can now be rewritten in a form similar to that of the Stokes-Einstein 
relation (4.4), by defining the volume per atom R =  V / N .  The quantity R1I3 is like 
a ‘length per particle’ and takes over the role of the characteristic length 1 below Eq. 
(4.4). Then one can write, following Zwanzig: 

(4.10) 

where ql is the longitudinal viscosity, related to [(4/3)q + q e ] .  Although the actual 
value of C‘, as defined by this equation, clearly depends on the ratio of the shear to the 
longitudinal viscosity, which as noted above is not known quantitatively in many 
liquids at the time of writing, Zwanzig notes that C’ as defined can only vary between 
0.13 and 0.18. Treating C‘ actually as a constant, Eq. (4.10) has precisely the form 
cbtained by Brown and March’ discussed in section 5.3 below; at the melting point of 
metals: see also Andrade”. Zwanzig’ also cites examples of molecular liquids which 
support the form of Eq. (4.10) but we shall not go into further details here. 

Rather, we turn next to establish an intimate link between shear and bulk viscosities 
on the one hand with neutron scattering on the other. This will be accomplished via the 
so-called dynamical structure factor S ( 4 ,  o), which we introduce immediately below. 

5 DYNAMICAL STRUCTURE FACTOR AND TIME-DEPENDENT 
CORRELATION FUNCTIONS 

Short-range order, so essential in distinguishing the dense liquid state from both the 
gaseous and solid phases of matter, is described quantitatively by the pair function g(r) 
of the liquid. This is accessible to measurement via the liquid structure factor S ( q )  
referred to in section 2, which in turn is related to the Fourier transform of(g(r) - 1). Let 
us now effect a frequency generalization of this static structure factor S ( q )  such that, for 
classical liquids to which we confine ourselves throughout this account: 

Following van Hove”, we note that S(4,w) is now accessible to inelastic neutron 
scattering. Essentially, S(q, o) is a measure of the probability that a neutron incident on 
the liquid will transfer momentum hq and energy hw to the liquid. 

The main object below is to show that, in the hydrodynamic (long-wavelength; long 
time or low frequency) limit, the dynamical structure factor S(4,  o) is related quantita- 
tively to a combination of shear and bulk viscosities. To motivate the (initially 
surprising) form of such a relation, it will prove convenient to return to the self- 
diffusion coefficient D, connected intimately to viscosity through Eqs. (4.4) or (4.10). 

Then, as van Hove especially emphasized, as well as S(q,o),  in a classical liquid, one 
can define a quantity S,(q,w) for the motion of a single (s) atom. In turn, this is 
observable via, now, incoherent neutron scattering as discussed by Egelstaff”. 
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10 D. M. HEYES AND N. H. MARCH 

The double Fourier transform of this function (q -, r; o -P t), namely GJr, t), represents 
the meanderings of a 'labelled' atom in time. If we have the 'tagged' atom at the origin 
r = 0 at t = 0 then in the hydrodynamic limit referred to above, Gs(r, t) is characterized 
by the diffusion equation 

18 G A ~ ,  t )  
D at . V2G,(r, t )  = -- 

With the initial condition specified above, namely Gs(r, t = 0) = 6(r), one readily finds 
the solution of Eq. (5.2) to be 

exp ( - r2/4Dt). 
1 

(4nDt)'" GSr, t )  = 

Fourier transforming to get S,(q, o) yields the result 

5.1 

It is customary to define the frequency spectrum of the liquid by 

Frequency spectrum (or spectral function) g ( o )  

(5.3) 

(5.4) 

While g(w) is of considerable interest in its own right, the aim presently is to relate D 
to Ss(q,o) in the hydrodynamic limit. From Eqs. (5.4) and (5.5), it is readily seen that 
one can obtain the self-diffusion constant D by either of the following procedures: 

which is a so-called Green-Kubo transport formula, or from 

D 
g(O = 0) = -. 

7c 
(5.7) 

The form of g ( o )  in dense liquids is shown schematically in Figure 2. 

5.2 

It will be seen from the above Figure that g ( o )  has a cusp at the origin and the object of 
the following is to clarify its origin and to relate its quantitative form to the shear 
viscosity q. 

Cusp in frequency spectrum at zerofrequency related to shear viscosity 
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MECHANICAL PROPERTIES OF LIQUIDS I 1  

An equivalent form of D to Eq. (5.6), going back essentially to Einstein, is obtained 
by considering the mean square displacement ( r2)  of an atom at long time t .  This can 
be calculated directly from Eq. (5.3) and leads to the result that (r2)  of an atom at 
long time t tends to 6Dt. It is instructive to rewrite this result in terms of velocityv rather 
than displacement. One has evidently 

r = 1; v(s) ds 

and forming the average of rz from this Eq. (5.8) one obtains, after some manipulation 
(see, for example, March13): 

Here we have introduced the so-called velocity autocorrelation function (for more on 
time-dependent correlations, see section 5.4 below). 

From hydrodynamics, and in particular the Navier-Stokes equation (see, for in- 
stance, Edwards et it can be shown (Ernst et ~ 1 . ’ ~ )  that the velocity autocorrela- 
tion function falls off at large r with a so-called long-time tail proportional to tP3/ ’ .  In 
turn, the Fourier transform of the velocity autocorrelation, related to the frequency 
spectrum g ( o )  by 

(5.10) 

was shown by Gaskell and March16 to have the small w expansion: 

D 
g ( 0 )  = - + a ,  Ol’z + O ( 0 )  (5.11) 

K 

Figure 2 Schematic form of frequency spectrum (or spectral function) y(to) as defined in Eq. (5.5). Cusp 
depictedismadequantitativein Eqs(5.1 l)and(5.12).The valueofy(co)at to =OisD/n. with D thecoefficient 
of self-diffusion. 
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where 

D. M. HEYES AND N. H. MARCH 

(5.12) 

with M the atomic mass. This result for a , ,  the coefficient of the term o1I2 in the 
expansion (5.1 l), makes quantitative the form of the cusp depicted in Figure 2. It is clear 
that though g ( o )  was introduced through the study of the meanderings of a single atom, 
the cusp contains not only the expected dependence on the coefficient of self-diffusion 
D but also carries knowledge of the shear viscosity q. 

5.3 

There is an analogous formula to Eq. (5.6) involving S(q,o)  rather than just the 
self-contribution S,(q, w). This takes the form (see, for example Egelstaff’ 2): 

Green-Kubo formula for viscosities: application to liquid metals at melting 

(5.13) 

By arguments involving the assumption of a Debye frequency, Brown and March’ 
obtained an approximate formula for liquid metals at the melting point. Specializing 
to the shear viscosity, this takes the form 

(5.14) 

where T,,, is the melting temperature and p is the atomic number density N/V Choosing 
the constant in accord with the early work of Andrade” there is excellent agreement 
between Eq. (5.14) and experiment, as shown in Table 1. There is close connection here 
with the work of Zwanzig embodied in Eq. (4.10) when D is obtained with similar 
approximations (Brown and March’; March”). 

5.4 Computer simulation of viscosities in Lennard-Jones fluids 

While the Green-Kubo formulae for D, and for the combination of viscosities in 
Eq. (5.13) are formally exact, applications using analytical methods, to date, are all 

Table I Shear viscosities of liquid metals near melting temperature (in lo-* poise) 

Li No K Rb Cs Cu Ag Au In Sn 

experiment 0.60 0.69 0.54 0.67 0.69 4.1 3.9 5.4 1.9 2.1 
theory 0.56 0.62 0.50 0.62 0.66 4.2 4.1 5.8 2.0 2.1 
(Eq. (5.14) 

After Brown and Marchg 
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MECHANICAL PROPERTIES OF LIQUIDS 13 

invoking subsequent approximations; eg to reach a result like Eq. (5.14). In deriving this 
result, a fairly well defined Debye frequency has been assumed at the higher 'edge' 
(see Fig. 2) of the frequency spectrum g(w). This assumption is best for simple liquid 
metals with relatively soft cores and with long-range pair potentials. It is less well suited 
to treat argon, and similar Lennard-Jones liquids. Therefore, in this section we shall 
refer to computer experiments on such liquids, which are conveniently carried out via 
time-dependent correlation functions, as set out below. Molecular dynamics computer 
simulation, MD, was first applied to Lennard-Jones fluids in a seminal paper by 
Rahman''. Until then all the MD simulations had been carried out using idealized 
molecular fluids with discontinuous potentials (hard spheres and square wells for 
example). Levesque ef ~ 1 . ' ~  first used the technique to calculate the transport coeffi- 
cients of these liquids. The shear viscosity (see the next section), the bulk viscosity and 
the thermal conductivity were evaluated using Green-Kubo formulae (compare Eqs. 
(5.6) and (5.13)). For example, if p denotes (1/3)(pxx + pyy  + p,,), then the formula for 
bulk viscosity qs is 

Similarly, the thermal conductivity ,I is, in terms of heat flux J: 

dt (J(t). J(0)). 

(5.15) 

(5.16) 

Since then the technique has been applied numerous times to cover essentially the 
whole of the Lennard-Jones fluid phase diagram. Levesque and Verlet2' recently 
returned to their original study with more extensive simulations and concluded that 
the (generally accepted21) too large value for the shear viscosity at the state p = 0.8442 
and T = 0.722 of 4.0 f 0.1 (LJ reduced units) was due to a long-lived metastable state in 
the original calculations. The simulations of Borgelt et ~ 1 . ~ ~  and he ye^^^ are perhaps 
the most extensive LJ simulations of the transport coefficients collected in one place. 
The data for all the tranport coefficients fits reasonably well to a range of analytical 
approaches, including a variously closed memory function expansion of the time- 
correlation f u n ~ t i o n ~ ~ . ~ ~ .  The success with respect to kinetic theories such as Enskog is 
quite a ~ c e p t a b l e ~ ~ .  However, the mean field kinetic theory based on a conceptual 
separation of the dynamics into 'hard' and 'soft' collisions is not vepy good in general22 

6 NON-NEWTONIAN'FLUIDS 

So far in this article, we have been concerned solely with liquids that obey Newton's law 
ofconstant viscosity. For such a Newtonian liquid, the shear viscosity, q, is a constant at 
given (T ,  P) and is independent of shear rate. The shear stress, oxy, varies with shear 
rate, dvJdy = 7 as, 
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14 D. M. HEYES AND N. H. MARCH 

The shear stress is proportional to the shear rate (we assume laminar or turbulent-free 
flow). Examples of Newtonian liquids are many pure single-phase liquids of low 
molecular weight, e.g., water. In such liquids, viscous dissipation can be regarded as 
being due to collisions between fairly small molecules. The shear rate imposes such 
a small perturbation on the liquid that it can be described in terms of a first order 
perturbation about the equilibrium state. In fact more properly, 

As the time average of the off-diagonal of the stress tensor at zero shear rate is zero 
i.e.,( o,,(O)) = 0 then Eq. (6.2) reduces to Eq. (6.1). The general expansion of Eq. (6.2) 
does however provide the framework for non-linear response. It is useful to attach 
a timescale, 7s = 3 - l  to a shear rate, which can be considered to be a 'disruption' 
time-scale. The time scale for stress relaxation in the liquid state, 7, can be viewed as the 
time it takes a typical molecule to diffuse a distance of order its mean diameter, 6. If 
~ ~ / 7 ~  << 1 the liquid is in the small perturbation ('Newtonian') limit. However, if 7JcS >> 1 
then the liquid molecules are not able to remain close to be equilibrium state at this 
shear flow rate, and there are deviations from Eq. (6.1) and higher order terms in Eq. 
(6.2) have to be considered. This is called non-Newtonian flow and its study is termed 
rheology. In fact, the whole stress tensor, r7 has to be considered as the off-diagonal 
shear stresses couple to the diagonal elements. The diagonal elements of the stress 
tensor, CT==, change under shear. Non-Newtonian fluids typicaily require large slowly 
diffusing molecules, such as polymer melts and colloidal liquids containing of solid 
particles in excess of O . 1 p  in diameter. There is a surprisingly large number of 
nowNewtonian fluid in every-day life (e.g., tomato ketchup and domestic abrasive 
cleaning fluids are two examples). Water is Newtonian because 7r - 10- "s, and as it 
is rare to encounter shear rates in excess of 106s-' then 7r/7s<< 1. However for the 
macro-molecular liquids 7r can increase so that tJ7 ,  >> 1 is readily achieved. 

The history of the sample is often an important parameter in determining non- 
Newtonian behaviour, especially, for polymeric liquids (although often a steady state 
can be achieved in which case the history of the sample can be neglected in practice). In 
general, the stress tensor depends on a range of parameters g(t, P,  T ,  7, v , .  . .), where 
y = yo d x j ( x )  is the shear strain. An analytic relationship between the stress tensor, 
- cr and these parameters is called the constitutive equation. Rheology as widely practised 
still relies on empirical constitutive equations of the general form, 

where o, is the so-called yield stress, which is the minimum stress that must be applied 
to the liquid before it will flow. The exponent, n allows for a range of non-Newtonian 
responses: n = 1, pseudo-Newtonian with an apparent viscosity, qp called the plastic 
viscosity (Eq. 6.3) with q = 1 is widely known as the Bingham fluid). For n < 1 the 
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MECHANICAL PROPERTIES OF LIQUIDS 15 

I 1st Newtonian plateau 

shear thickeninc 

c o 11 o i d s at higl 
solids fraction 

( polymers 2 

2nd Newtonian plateau 

Figure 3 A schematic diagram showing a typical rheological Row curve for a liquid. 

apparent viscosity ox./? decreases with increasing shear rate- the liquid is said to be 
shear thinning. If n > 1 the liquid is said to be shear thickening or ‘dilatant’, usually 
a problem encountered with colloidal liquids at high shear rates. At high shear rates the 
viscosity is often seen to level off to a plateau value. This is observed for polymer 
solutions, melts and colloidal suspensions. The latter at high solids fractions ca. 50%, 
show the additional dilatant behaviour (see Fig. 3). Shear thinning and shear thicken- 
ing are associated with some form of internal reordering of the molecules in the bulk of 
the liquid, in a manner that facilitates flow under the applied shear stress or strain rate. 
The viscosity of all non-Newtonian liquids will approach a limiting value (if one waits 
long enough to take the measurement), which is called the Newtonian viscosity, ‘lo. The 
viscosity is then given by Eq. (6.1). 

Often time or equivalently, ‘history’ is an essential parameter to include in the 
description of the liquid. This can arise in two ways. The liquid can be essentially 
fluid-like in behaviour, and the apparent viscosity, calculated from Eq. (6.3) for 
example, would be a function of time (the shear thinning form of this is known as 
thixotropy). However, even in the Newtonian strain rate region, where there is a minor 
perturbation of the liquids internal structure, time can still be an important parameter 
in characterising the liquid. The application of an oscillatory shear strain to a liquid can 
excite a viscoelastic response, which means that the liquid behaves partly as a classical 
fluid with no ‘memory’ of its past history, and partly as an elastic medium in which the 
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16 D. M. HEYES A N D  N. H. MARCH 

liquid can ‘store’ elastic energy of deformation which can be recovered on release of 
the sample by the deforming element. The strain on the sample, y ( t )  is given by, 

y ( t )  = y o  cos wt (6.4) 

where yo is the strain-amplitude. Providing the strain amplitude is sufficiently low, 
typically yo -= 0.03, the structure of the liquid is not significantly disrupted. This linear 
viscoelastic response is usually represented as a complex shear modulus. 

G*(w) = G’(w) + iG”(w), (6.5) 

where G’(w) is the storage modulus and G”(o) is the loss modulus, which measure the 
solid-like and fluid-like characteristics of the liquid respectively at a particular exciting 
frequency, w. Consider a step of unit strain applied to the liquid at time t = 0. The shear 
stress in the sample will build up instantaneously and then decay to zero with time. This 
defines a stress relaxation function, C,(t). The Maxwell model for a classical visco- 
elastic fluid defines a C,(t)  as a single exponential with a decay time, t = qo/G,, 

C,(t) = G ,  exp ( - t /z) .  (6.6) 

G ,  is the elastic modulus of the solid aspect of the liquid. In terms of the shear stress 
relaxation function we have, 

which gives, 

G ,  (d2 
1 + (w#’ 

G ‘ ( o )  = 

and 

So far the discussion of non-Newtonian flow has been phenomenological. In recent 
years, molecular simulation has been useful in improving our understanding of 
non-Newtonian liquids from the results of the simulations themselves and from the 
stimulus the technique has given to advancing the statistical mechanics of the non- 
equilibrium state. 

6.1 Molecular Simulation 

The first appearance of rheology (interpreted in its broadest sense) in molecular 
simulation was in the 1960s, when a non-intrusioe method was used to compute the 
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MECHANICAL PROPERTIES OF LIQUIDS 17 

Newtonian viscosity, qo,  of molecular fluids using molecular dynamics (MD). The 
newtonian viscosity was calculated from the equilibrium trajectories of the molecuIes- 
simply by monitoring the time decay of shear stress fluctuations in an unsheared 
sample. The Newtonian shear viscosity, ' lo, is given by a Green-Kubo formula 
(compare Eq. (5.9) for D): 

(6.10) 

where V is the volume containing N molecules, T is the temperature. For monatomic 
fluids the microscopic definition of the stress is, 

(6.1 1) 

where p is the a component of the momentum of an arbitrary particle i of mass mi 
and raij is the a component ofrij, the vector separating the centres of the two molecules 
i and j ,  and &r) is the interaction potential between the molecules. In the simulation 
the function in the ( .--), called a time correlation function, is calculated. The integral 
in Eq. (6.10) is performed at the end of the simulation. 

Experimentally, viscosity is measured by applying a strain rate and measuring the 
stress in the fluid. It is only under these circumstances that departures from purely 
newtonian behaviour can be achieved. In the early 1970s a range of so-called Non- 
equilibrium Molecular Dynamics, (NEMD), techniques were developed to apply 
a finite strain rate to molecules in the molecular dynamics cell. Gosling e t ~ 1 . ~ ~  
published the first paper to observe by MD shear thinning of a molecular fluid under 
shear, by applying an oscillatory shear rate field across the simulation cell. There was 
an integer number of wavelengths of the shear velocity profile in the gradient direction 
to allow full periodic boundary conditions with no velocity discontinuity at the 
boundary (node point). Another influential publicationz7 introduced shear flow in the 
MD cell by sandwiching it between two fluid walls translating in opposite directions. 
Although this bears a close resemblance to the experimental situation, it is fair to say 
that this boundary-driven flow method has not found wide use by the molecular 
simulation community because it is difficult to disentangle the ordering effects of the 
boundary from the inherent rheology of the fluid, which is present in bulk laminar flow. 
The simulation cells are too small to obtain a reasonably large bulk region in the centre 
of the cell far away from the walls. Boundary-free or homogeneous shear schemes have 
not found more favour, although with improvements in computer power they could 
become popular again in the future (especially with the continual interest in 'wall-slip' 
and other boundary effects). 

Pseudo-bulk flow can be achieved in molecular simulation using an ingenious 
modification of the periodic boundary condition convention2'. These 'sliding image' 
periodic boundary conditions are implemented by defining the shear flow (x) linear 
momentum of a molecule in the k-th cell image of a box particle in the shear-gradient 
( y) direction by, 

p i  = p," + kYL (6.12) 
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18 D. M. HEYES AND N. H. MARCH 

where L is the cell side-length and k = 0, _+ 1, _+ 2.. . . Shear flow can be superimposed 
on the molecular liquid using the so-called SLLOD equations of motion29: 

(6.13) 

(6.14) 

where 2 is the unit vector in the x-direction. Equation (6.13) represents the extra 
displacement in the flow (x) direction caused by the shear flow. Equation (6.14) is the 
Newton equation of motion modified to include the inertial effect of the imposed shear 
flow. The apparent shear viscosity is calculated using Eq. (6.1). The last term builds in 
a thermostat to the equations of motion, which is essential to take out the dissipated 
heat generated by the shear flow. In order to obtain statistically significant shear 
stresses the applied shear rate has to be - 101zs-l, which is enormous by normal 
laboratory standards. A range of different prescriptions for a(t) was developed in the 
1980s, e.g., gaussian thermostat3’, PUT thermostat3’ and Nose-Hoover thermostaP2. 

At very high shear rates the molecular liquids were observed to reorganise into 
a quasi-lattice like structure composed of tubes of particles (‘strings’) flowing along the 
streaming (flow) direction. A projection of these tubes in the gradient-vorticity plane 
(yz) revealed a distorted hexagonal lattice. The strings were observed in 2 0  to 
disappear on replacing the gaussian by the so-called profile unbiased thermostat 
(PUT)3’. Since then the use of NEMD as a probe of non-equilibrium phase diagrams 
has been controversial because of the influence of the thermostatting procedure on the 
structures formed at very high shear rates (well into the second Newtonian plateau). 
NEMD is a useful route to the Newtonian viscosity, however, by taking the ~ ( j ) ,  j -0 
limit. NEMD has also been used to calculate the distortion in the radial distribution 
function, and the change in thermodynamic properties of the equilibrium fluids, in the 
near-Newtonian region before excessive shear thinning leads to these long range 
structures. In this mildly shear thinning regime all the thermostats give statistically 
indistinguishable results. 

Under shear flow the pair radial distribution departs from spherical symmetry 
(compare section 3). The function, g(r , j )  has the form33 

(6.15) 

where E = r j  and T is a characteristic relaxation time for the equilibrium stress. E is 
a recoverable strain which has to be obtained from the simulation (this is where the 
many body dynamics enters the formulation). To first order, the distortion of 
g(r)( = g(r,O)) only affects the shear (xy)  plane. The shear stress and hence viscosity 
could be calculated33 from Eq. (6.15) but it is easier to use the direct route of Eq. (6.1). 
For simple (e.g., Lmnard-Jones) liquids the shear viscosity and thermodynamic 
quantities have been observed to have a simple asymptotic behaviourJ4 with shear rate 
as 1; -, 0 (provided the state is not too close to the triple poi@). In three dimensions, 

(6.16) 

(6.17) 

E ( j )  = E(0)  + A(i))3’2. (6.18) 
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MECHANICAL PROPERTIES OF LIQUIDS 19 

Similarly, for oscillatory shear in the linear response region, 

q ( j )  = ~ ( 0 )  - A(io)'l2, (6.19) 

(6.20) 

for wave vector q and where A(p, T) is a different state point dependent constant in each 
case. There do appear to be departures from this generic behaviour close to the triple 
point itself3$. 

A major advance by Evans and Morriss was to extend the Green-Kubo formula to 
non-equilibrium shear flow3'. Consider a liquid that is sheared from a time t = 0. The 
shear stress develops along a non-equilibrium trajectory, a:,,(t) (where the * denotes 
a non-equilibrium state). They defined a transient time correlation function, 
( aafl(0)o$(t)), which can be used to evaluate the non-newtonian viscosity as a function 
of shear rate, 

J o  
(6.21) 

This relates the time-dependent apparent viscosity to a correlation between fluctu- 
ations in stress in the equilibrium and non-equilibrium states. (in the limit t + co we 
have ~ ( j ) . )  Equation (6.21) is valid for arbitrarily large shear rates and can be 
generalized to specify normal pressure differences. 

A recent application of homogeneous shear NEMD investigated the shear thinning 
of n-butane". The main problem with NEMD currently is that computer power limits 
it to fairly small molecules by rheogical standards, which only start to noticeably shear 
thin at j - 10'2s-'. At these shear rates even during a typical simulation of tens of 
picoseconds there is appreciable shear heating, which has to be thermostatted out in 
some ad hoc manner. The consequences of this have still not been fully resolved. We 
have to wait for increases in computer power of several orders of magnitude before we 
can realistically plan to simulate at experimentally realized shear rates (( lo6 s- I), 

and still get statistically reasonable properties, before NEMD becomes a widely used 
tool. 

6.2 Colloidal Liquids 

While NEMD was being developed to investigate molecular fluids, a parallel activity in 
the modelling of another class of non-Newtonian molecules was being devised and 
improved. In the mid-1980s Brownian Dynamics, BD, simulation was developed to 
calculate the rheology of model colloidal dispersions/suspensions. The technique is 
structually similar to NEMD except that the equations of motion are Langevin rather 
than Newtonian, which causes the particle motion to be heavily damped. The particle 
trajectories in the simulation are presumed to be thermostatted by the solvent. 
Therefore there is no concept of a 'thermostat' in BD. 
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20 D. M. HEYES AND N. H. MARCH 

The dynamics of colloidal systems can be interpreted in the light of essentially two 
characteristic time-scales. The velocity of the colloidal particle fluctuates on a 
‘Brownian time scale’, 7, = rn/& where rn is the Brownian particle’s mass and is the 
Stokes friction coefficient (for stick boundary conditions, < = 3nqse, where qs, is the 
solvent viscosity and c is the diameter, this time, of the Brownian particle). The 
timescale, T,, is many orders of magnitude smaller than the time it takes the particle to 
move a distance of order its diameter, 7, - 02 /Do .  Do is the self-diffusion coefficient of 
the colloidal particle at infinite dilution (Do = k, T / t ) .  At very short times a colloidal 
particle diffuses in an approximately static configuration of surrounding molecules. 
This is called the ‘short time’ regime. In the time, t range, 7, >> t>> 7, the self-diffusion 
coefficient is essentially constant and is called the short time diffusion coefficient, D’. At 
longer times, after a particle has diffused a distance of order its diameter, the diffusion 
process has been slowed down by the interaction of the particle with its cage of 
particles. The hindered passage of the particle through its cage of surrounding particles 
slows down its rate of progress, resulting in the diffusion coefficient in this ‘long-time’ 
regime falling below the value of D”. As t>>7,  the diffusion coefficient tends to 
a constant value, which is called the ‘long-time’ self-diffusion coefficient DL. The short 
time diffusion coefficient has been measured by multiple light scatteringJ8 while the 
long time diffusion coefficient is amenable to a wider range of techniques including 
fluorescence recovery3’ and photon correlation spectros~opy‘~*~~. 

Both Ds and DL depend on solids volume fraction. The difference between Ds and DL 
is some measure of to what extent a colloidal particle is retarded by coupled solvent- 
mediated forces and particle migration at long times. In the limit of the volume fraction 
4+0, 

DL = Do(l - a4)  t >>7,, (6.22) 

and 4 = nNc3/6V. There is a range of values for the constant a in the literature; analytic 
values of a depend on the level of the dynamical approximation, ranging between 
- 0.08 < a < - 2.625 for example4’. There have been experimental measurements of 
the volume fraction dependence of DS and DL over the whole liquid 
DL/Do < 0.1 at the volume fraction at which crystallization takes place4’. 

Both atomic and colloidal fluids can be represented by an equivalent hard-sphere 
fluid, on assignment of an effecthe hard-sphere diameter, c to the real The 
density dependence of the self-diffusion coefficient of the hard-sphere fluid is now 
well-known, with several analytic fits in the literature. For N hard-spheres in volume V ,  
we define a reduced number density, p = Na3/V. A fit to simulation data given by 
Speedy46 is, 

D = D o o  1-  ( (&))( 1 + ~’ (0 .4  - 0 . 8 3 ~ ~ ) ) .  (6.23) 

Erpenbeck and Wood4’ have fitted their MD hard-sphere simulation data to the 
expression 

D = D,(1 + a l p  + a 2 p 2  + a,p3), (6.24) 
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MECHANICAL PROPERTIES OF LIQUIDS 21 

where a, =0.038208154, a, = 3.182808 and a3 = - 3.868771766. Both Eqs. (6.23) and 
(6.24) include a reference self-diffusion coefficient. The diffusion coefficient for an ideal 
hard sphere gas, Doo, is determined from kinetic theory to be, 

Do, = 3(k, T/nm)’12 /8poZ, (6.25) 

and D ,  is the Enskog-theory extension of these basic asumptions to finite density, 

D, = 1.01896DoO/g(~), (6.26) 

where g(o) is the value of the pair radial distribution function at the contact of the 
spheres (compare section 3.1). 

In the context of colloidal liquids Eqs. (6.23) and (6.24) are conceptually unsatisfac- 
tory, because they use a reference self-diffusion coefficient which is based on the kinetic 
theory of gases in the limit of zero density, Do,  or alternatively, its finite density 
extension, D,. There is no reason to expect the ideal gas to be pertinent to the colloidal 
state. Nevertheless, the behaviour of the ‘molecular’ hard-sphere fluid at finite densities 
should, in some sense, still be relevant to colloids because, as volume fraction increases, 
excluded volume effects should act in both the molecular (Le., hard-sphere) and 
colloidal liquids to slow down self-diffusion. 

An alternative representation of hard-sphere molecular dynamics data, developed 
from the pioneering work of Hildebrand4*, by Dymond4’, and the others, e.g., rePo, 
has similarities with the behaviour of colloidal liquid. Significantly, it does not use the 
kinetic theory of gases as its basis, 

DIDoo = 1.271p(p0/p - 1.384)/p0, (6.27) 

where po = 2112 is the close-packed density of the f.c.c. crystal. This formula is an 
empiricaI fit to simulation data which emphasises the dominance of excluded volume 
effects at high density. The coefficient, Do, does appear in Eq. (6.27) to confer a realistic 
temperature dependence to D but otherwise makes no attempt to go over to the low 
density limit correctly. The formula in Eq. (6.27) has a low density limit that is not that 
of the ideal gas. Equation (6.27) is alternatively expressed in terms of the volume 
fraction, 

DIDoo = 1.271 - 2.375574. (6.28) 

Equation(6.28) has the limit D --f 0 at volume fraction of0.54, which is equal to the solid 
density at melting for a hard-sphere system. 

Because of the approximate treatment of the solvent, the basic equations of motion 
for N-interacting Brownian particles are not Newton’s equations but (3N coupled) 
Langevin equations, with an assumed extension ot include interacting particles’ ’. 

p =  - r p + R + F ,  (6.29) 

where p is the momentum of the Brownian particle, R is the Brownian force on the 
colloidal particle, which is represented by a normally distributed random number. F is 
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22 D. M. HEYES AND N. H. MARCH 

the systematic or direct force between the colloidal particles (including any external 
force). The time average of a dynamical quantity obtained from a phase space trajectory 
generated by the Langevin equations is equivalent to the phase space distribution 
average obtained from the Fokker-Planck equation. The stationary solution of the 
Fokker-Planck equation is the canonical distribution function. By virtue of this fact, 
static properties of the Brownian particle system are not influenced by hydrodynamic 
interactions and are the same as calculated from canonical M D  or MC simulations for 
a system of particles with the same interparticle interactions. It should be stressed, 
however, that presence of a solvent will modify quite dramatically the dynamics of the 
particles. Consequently the dynamical properties of a Brownian particle system and its 
MD counterpart are quite different (The reason for that is that the time evolution in 
these two systems is determined by the different dynamic  operator^^^). For most 
treatments of the dynamics of interacting Brownian particles, only the configurational 
evolution, which proceeds on a timescale much greater than z ~ ,  is relevant. In this case 
the Langevin equations reduce to the “position Langevin equation”. The associated 
equation of motion for the configurational distribution function is the Smoluchowski 
equation. The Langevin/Smoluchowski position level of equations, like the momentum 
Langevin/Fokker-Planck level equations, produces canonical averages which, in the 
case of static quantities, are independent of hydrodynamic interactions and are equal to 
the MD or MC averages. This independence of the nature of the simulation method 
( M D , M C  and BD) for static properties provides a good consistency test of the 
simulations. 

Brownian dynamics simulations are based on the position Langevin equation. If 
many-body hydrodynamic interactions are neglected this equation leads to the follow- 
ing position updating algorithm for the particle positions in time-steps, h,53 

DO 
kLtT 

ri(t + h) = r,(t) + - Fi(t)h + Ari(t, h) (6.30) 

where i = 1 , .  . . , N are the particle labels, F is the systematic or direct force between the 
colloidal particles (including any external force) and Ar is the random displacement 
sampled from a gaussian distribution of zero mean and variance ( A r 2 )  = 6D0h. For 
colloidal particles of diameter in excess of 0.1 pm, T~ << z,, so we can choose a timestep 
h such that T~ << h << T,. Then it can be shown33 that the Langevin equation is equivalent 
to the following colloidal particle position update algorithm: 

(6.3 1)  

(6.32) 

(6.33) 

The shearing of the liquid is implemented via the j ( t )  term in Eq. (6.31). The random 
displacement 6, = R,h/mt is related to the infinite-dilution self-diffusion coefficient, 
Do, by 

(6:) = 2hD0. (6.34) 
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Just as for NEMD configurational averages are computed from values determined 
at each time step. A number of models which attempt to include many-body hy- 
drodynamics have appeared recently employing a diversity of  method^^^*^^. 

Brownian dynamics simulations have shown shear thinning b e h a ~ i o u r ~ ~  but not 
shear thickening probably because the above algorithm has no inertia in the dynamics. 
It has been used to investigate the rheology of model stable suspen~ ions~~ ,  and 
flocculated suspensions (electro-rheological fluids and depletion f l o ~ s ) ~ ~ - ~ * .  At high 
shear rates (in the second Newtonian plateau) structures similar to those produced 
using the gaussian thermostat in NEMD have been observed. The distance and time 
scales of the model colloidal particles are minutes and pm, so comparison with 
experiment is feasible whereas it is not for the atomic fluids modelled by NEMD.  
A picture is now evolving of a strong link between microstructural changes under shear 
flow and the observed rheology. Neutron and light scattering, combined with 
brownian dynamics computer simulations, are proving effective complementary tools 
in bridging the microscopic and macroscopic behaviour of colloidal systems. One 
structural probe that can be accessed by both scattering experiments and BD is the 
Fourier transform of g(r, f),” 

kxk, k2 k2 k2 
k k S(ff) = S O W  + Pe,- A ,  (k ,  4 )  + Pe2 $ A ,  (k,  (6) + Pe2 -? A2(k ,  4 )  + . . . (6.35) 

where A, (k ,  (6) and A,@, 4 )  are state dependent variables. A typical schematic picture 
of the scattering beam and couette cell is shown in Figure 460. In practice it is difficult 
to probe the shear-gradient plane, the flow-vorticity direction being easier. Neutron 
scattering has given evidence that the ‘density’ of particles in the flow direction 
diminishes and in the vorticity direction it increases. This picture is entirely consistent 
with the string phase, as revealed by BD as the average density of particles along the 
string diminishes with increasing shear rate and the number of strings per unit volume 
increase56. 

Over the complete volume fraction range the following analytic expressions, called 
the Krieger-Dougherty equations, fit the experimental relative viscosity data of near 
hard-sphere dispersions quite we1lY6’ 

qro = (1 - J‘,-/0.63)- 2, (6.36) 

and 

q,, = (1 - Vf/0.71)-2, (6.37) 

where q,, is the relative viscosity of the colloidal liquid in the second Newtonian 
plateau. As there are no many-body hydrodynamics in the simulation, it gives the 
relative viscosity difference, qr0 - q,,, rather than qro (qrm is entirely hydrodynamic in 
origin). A recent extension of BD to consider oscillatory shear has been made62. The 
analytic expressions for the dynamic moduli are, for the storage modulus, G‘, 

ox,(t’) dt‘cos (ot‘), (6.38) 
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scattered beam 

Light or neutron beam + detector 

flow profile geometry 
Figure 4 A sketch of the typical arrangement used for light or neutron scattering of colloidal liquids under 
shear. 

and for the loss modulus G”, 

o,,,(t’)dt’sin (or’). (6.39) 

The contents of the cell are homogeneously strained in an oscillatory fashion over 
n cycles and these integrals are evaluated numerically. The imaginary viscosity 
difference, q‘ = G“/o, for a 4 = 0.427 state using a 4 ( r )  = k, T ( r ~ / r ) ~ ~  potential is shown 
in Figure 5, taken from this programme of work. In the limit of zero frequency this 
should give the Newtonian viscosity. The prediction based on the Krieger-Dougherty 
formulae is given on the Figure. It can be seen that, even without many-body 
hydrodynamics in the model, the extrapolation as o -0 is in good agreement with the 
experimental value. 
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8 
7 q- Krieger-Dougherty value 

6 t  
0 

4l 3 

6 -  
5 -  0 

4 -  
3 -  

2 -  = 
1 -  
0 

0 

+ Q  

+ 

0 BD simulation 
O m  

I .  

0 BD simulation 
2 -  = 
1 -  
0 

O m  

I .  

0.1 1 10 100 1000 10000 
W T r  

Figure 5 The frequency dependence of the imaginary viscosity, 7’ as a function of frequency for three strain 
amplitudes, (a) yo = 0.02, (diamond) (b) yo = 0.10 (cross) and (c) yo = 0.25 (square) at 4 = 0.472, N = 108 and 
interaction cut-off at r, = 1 . 1 ~  for a r - 3 6  pair potential. 

To summarize, this section has described the progress made by molecular simulation 
in modelling non-Newtonian flow. The molecular simulation approaches are useful in 
providing a microscopic interpretation of the origins of non-Newtonian flow, and offer 
an exciting prospect for the future. 

7 INTERFACIAL TRANSPORT AND RHEOLOGY 

The physics of the interfacial region separating two fluids is an area of considerable 
current interest at the time of writing. The area embraces soft condensed matter, and in 
particular complex fluids such as liquid-liquid emulsions and gas-liquid forms. Inter- 
facial rheology is concerned with the response of mobile interfaces to deformation. 

To begin a discussion of interfacial transport, one is concerned with the theory, 
measurement and application of interfacial hydrodynamics. One can start by adopting 
the classical macroscopic view of fluid interfaces as idealized two-dimensional singular 
surfaces. The adsorption of molecular or macromolecular surfactants imparts 
intrinsic rheological properties to the interface such as interfacial shear and dilata- 
tional viscosities (which are two-dimensional counterparts of the three-dimensional 
viscosities treated above) and Gibbs elasticity, which indicates the change in inter- 
facial tension with area. Gradients in surfactant concentration and temperature cause 
interfacial tension gradients that produce such phenomena as the ‘tears’ of strong 
wine. 
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As to experiment, light-scattering techniques have acquired considerable impor- 
tance, (see, e.g. Dorshow and Turkevich6’), as has the deep-channel viscometer for 
measuring interfacial shear viscosity. This is defined as the ratio of interfacial shear 
stress to rate of shear. 

As part of the above general area, one can cite important applications including 
Rayleigh and Benard instabilities, interfacial turbulence, thin-liquid-film hydro- 
dynamics and stability and the rheology and stability of foams and emulsions. The 
understanding of the metastability of complex fluids, involving the use of Derjaguin- 
Landau-Verwey-Overbek theory, is important to pure scientists and technologists 
alike. The reader wishing to go further should consult the edited volume by Edwards, 
Brenner and Wasan14. 

8 SUMMARY AND PROPOSALS FOR FUTURE WORK 

While, for Newtonian liquids, a good deal of udderstanding now exists of mechanical 
properties, there remain diffuculties for a fully analytical theory, and most formulae 
that have emerged are still based on models (eg hard sphere models on the one hand, 
cage models, and models most appropriate for simple liquid metals with soft cores and 
long-range forces based on spectral functions with relatively sharp cut-off at a ‘Debye’ 
frequency.) Though computer simulation has helped greatly in classes of liquids such as 
Lennard-Jones fluids, and in clarifying between various transport formulae proposed 
(see, for example, Allen64), the need for analytical progress remains a focal point. On the 
experimental side, a systematic programme of experimental studies of bulk viscosity on 
simple liquids seems called for, though the experimental measurement still seems rather 
difficult. 

Ofcourse, the field of non-Newtonian liquids remains much more open theoretically, 
and much further work is called for here, both computational and analytical. Again, 
systematic experimental programmes seem called for, to test, and if necessary, allow 
extensions of current concepts and models. The area of non-Newtonian liquids is 
currently of great technological importantance, as is that of rheological behaviour at 
interfaces (see the book by Edwards et al.14). 
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